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ABSTRACT

A system of approximate equations for the determination of thermal
stresses in piezoelectric plates with large thin films of a different
material plated on the surfaces is derived. The plate equations are ob-
tained by making a suitable expansion of the pertinent variables in the
thickness coordinate, inserting the expansion in fhe appropriate varia-
tional principle and integrating with respect to the thickness in the
manner of Mindlin. Conditions resulting in both extensional and flexural
stresses are considered and the full anisotropy of the quartz is included
in the treatment. The particular case of purely extensional thermal stresses
resulting from large electrodes of equal thickness plated on the major
surfaces of doubly-rotated quartz thickness-mode resonators is treated in
detail. The changes in resonant frequency resulting from the thermally
induced biasing stresses and strains are determined from an existing
perturbation equation., Calculations,using the newly defined first temp-
erature derivatives of the fundamental elastic constants of quartz,are

performed for large gold electrodes on doubly-rotated quartz plates,
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1. Introduction

A perturbation analysis of the linear electroelastic equations for small
fields superposed on a bias has been performedl. The change in resonant fre-
quency due to any bias such as, e.g., a residual stress may readily be ob-
tained from the resulting equation for the first perturbation of the eigen-
value if the bias is known, The use of this perturbation equation has already
been shown to be extremely accurate in the determination of changes in the
surface wave velocity of crystals due to flexural biasing stressesz.

In this paper a system of approximate plate equations for the determina-
tion of thermal stresses in thin piezoelectric plates coated with much thin-
ner films is derived in the manner of Mindlin3-5. The resulting approximate
equations simplify the treatment of many thermal stress problems considerably,
and the three-dimensional detail not included in the approximate description
is not deemed to be important for our purposes. In order to keep the deriva-
tion of the thermoelastic plate equations clear and not introduce extraneous
complications that can lead to confusion at the outset, we first ignore the
elastic constants that cause coupling between shear and extension in the
constitutive equations. Both extensional and flexural plate equations are
obtained. After we obtain the thermoelastic plate equations under the afore-
mentioned simplifying assumptions, we extend them to the general anisotropic
case, It should be noted that coupling between shear and extension exists and
is important even in the case of rotated Y-cut quartz. The general aniso-
tropic version of the thermoelastic plate equations is applied to the case of
purely extensional thermal stresses arising from large rectangular identical
electrodes on doubly-rotated quartz plates and a simple exact solution of the

extensional plate equations is obtained. This solution of the static
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approximate thermoelastic plate equations for the arbitrarily anisotropic
plated crystal plate with rectangular electrodes is readily shown to hold
for large electrodes of essentially arbitrary shape. The approximate three-
dimensional displacement field resulting from the solution of the plate
equations is readily determined from the description. This three-dimensional
displacement field is required in order to obtain the change in resonant
frequency due to the thermally induced biasing state from the equation for
the first pefturhation of the eigenvalue,

Since the total change in frequency of quartz plates is due not only to
the thermal stresses and strains but also to the change in the fundamental
elastic constants with temperature, in order to complete the above-mentioned
calculations of the resulting actual change in freguency per degree change
in temperature, the newly define66 temperature derivatives of the fundamental
elastic constants of gquartz must be employed. These newly defined6 temper-
ature derivatives of the fundamental elastic constants of quartz are used,
along with the aforementioned thermal stress analysis of the quartz plate
and the perturbation equation, in performing calculations of the change in
frequency per degree change in temperature for rectangular gold electrodes
on doubly rotated quartz plates, The results indicate that there are whole
ranges of doubly-rotated orientations for which the change in frequency with

temperature due to the electrodes is more than an order of magnitude less

than that of the AT-cut.




2, Perturbation Equations

The equation for the first perturbation of the eigenvalue obtained
from the perturbation analysis mentioned in the Introduction may be

written in the form

e T R @.1)
where 4, and w are the unperturned and perturbed eigenfrequencies,

respectively, and

~4 Ln ~, J‘ ~
H, = i uL[xLYg’; 1<"'qu +3 ¥ -dG1as+ ! [1<:Y,Lg’; +3’I"’L?"1 av, (2.2)
in which S is a surface enclosing a volume V., In (2.2) NL denotes the
unit normal to the undeformed surface at the reference temperature, u,Y
denotes the mechanical displacement vector and $ denotes the electric

~L ~
potential. The linear stress KLY and electric displacement vector .8:

are given by the usual linear piezoelectric constitutive relations

~b s
Ky = Styma®o,m * CMiy®m

~g ~ ,
PL = oy, m " S R
and as usual satisfy
~4 o B
Ky,r = Py > -Df,’L-O. (2.4)

The quantities gl.ylh" em‘Y and em

piezoelectric and dielectric constants, respectively, and p denotes the

denote the second order elastic,

mass density. The nonlinear contributions to the Piola-Kirchhoff stress

tensor ?{Y and reference electric displacement vector FI‘. take the respective

fornl
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'qv = Crvm? Agr.yua)“a, u*temy® uo
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LyMo’ eMLY and GLM are effective constants that depend on the biasing
1

state” and ASI-YM denotes a small change in the fundamental elastic constants
due in this instance to a change in temperature. Clearly, the total dynamic
Piola-Kirchhoff stress tensor and reference electric displacement vector
are given by
~ ~fQ ) o
+ =
B ol e, 3 BB, (2.6)

The vector g: denotes the normalized mechanical displacement for the pth

unperturbed mode and Qu denotes the normalized electric potential for the

pth mode, ' -,,
v #
g;.ix,é*.u, (2.7)
[ B
where
2 u.up.
N = | pu av., (2.8)
- [t

The normalized stress tensor kuny and electric displacement vector d‘;., both

for the normalized pwth mode, are given by

K #

+
ry - “ymao,m T vyt M
~

dme - P

L ™ Ly v, M L ' (2.9)

The upper cycle notation for many dynamic variables and the capital Latin and
lower case Greek index notation is being employed for consistency with Ref.1l,
as is the remainder of the notation in this section, The fact that the capital
Latin and lower case Greek indices refer to the reference and intermediate

positions of material points respectively, is not important here, and in this
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work they may be used interchangeably. We employ Cartesian tensor nota-
tion, the summation convention for repeated tensor indices, the convention
that a comma followed by an index denotes partial differentiation with
respect to a reference coordinate and the dot notation for differentiation
with respect to time.

When the electrical and electroelastic nonlinearities are ignored we

have
eLM =0, eva =0, (2.10)
and
¢ =7 8 4o B +c W _+cC w (2.11)
LyMo LM Yo 3LYMOAB AB 2LYKM o,K 2LKMy 'Y,K’
where
'.l‘l = 5 g =l (w, +w ) (2.12)
™ Sy B T2 Moty e o -
gnynuAB édenote the third order elastic constants and wK denotes the static

biasing displacement field. Thus, in this description the present posi-

tion ¥ is related to the reference position X by

Y& ,E) = X + WX ) +ux,t). (2.13)

For the electroded crystal plate with shorted electrodes, which is

of interest here, the boundary conditions take the form7

Jos

NL"l'&,Y = sﬂzh'y;mnuc’m-zh'p q, $=0, on s, (2.14)
where A, B, C, D take values confined to the surface of the crystal plate
and skip the value associated with the normal, 2h’ is the thickness of the
electrode and p’ the electrode mass density. Since the electrodes are

isotropic, the plating stiffnesses are given by

! - ! ’
Yanco Aobnacnﬂ" (Gmam-ramanc), (2.15)

where the plate Lamé constant A; is given by




A=A A e, (2.16)

and A’ and p’ are the Lame constants for the plating material. The boundary
conditions satisfied by the normalired lith eigensolution of the unperturbed

linear system are given by

— ey 00, II-H o\-
NLF%w 6YB4h YABCDg%,D h'p’g v ? # 0, on S, (2.17)

Taking uY.and $ to be the unperturbed normalized jLth eigensolution 95
and %H’ respectively, substituting from (2.6)1, (2.14), (2.17), (2.5)2

and (2.10) into (2.2) and employing the divergence theorem, we obtain

B =- | [" & av. (2.18)

Ly7y, L

Now, the substitution of (2.5)1 and (2.10), along with the aforementioned

selection of uY and $ into (2.18) yields

%, (2.19)

- J’(cwm Styma’ %o, Wy, L

which, with (2.1), (2.11) and the given small change in the fundamental

elastic constants Agnyua due in this instance to a change in temperature6

b
gives the change in resonant frequency due to a biasing deformation and

the change in elastic constants resulting from a change in temperature.

3. Static Plate Equations

A schematic diagram of the plated crystal plate is shown in Fig.l
along with the associated coordinate system. Referred to this coordinate

system the static form of Mindlin's plate equations may be written3
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7.
(n) (n-1) (n)
KAJ A nl(zJ 0, n=0,1,2, (3.1)
where A, B, C, D take the values 1 and 3 and skip 2 and
h
™ . J' n p® _
s 3 BaPey s P [xzsz] -h ° Wi

The linear thermoelastic constitutive equations for the mth order stress

resultants for homogeneous temperature excursions (T - To) take the form

2
(m) : (n) (m) i
KIJ AL nzo HmnEICL -d vIJ(T To) y (3.3)

where we have taken the liberty of dropping the lower script 2 on the

C KL’ the Vg denote the thermoelastic constants and
Hm h(mm+l)/(m+n+1) m+n even
0 m+n odd, (3.4)
d(m) = 2h (m+1)/ m + 1) m even
0 m odd. (3.5)

The nth order plate strains take the usual form

(n) 1 . (), _(n) (n+1) (n+1)
B 3 MtV gt EelGgh, T M, .59
where 2 3
n (n) ()
S Z T R E X¥2 s il
n=0 n=0
2 3
- (n) - (n)
Exn E XEap » Epp z B - il
n=0 n=0

The thermoelastic constants VIJ are related to the coefficients of linear

expansion oL by the usual relation

Y22 " ox™m* 3.9
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The static form of Mindlin's simplified extensional equations for the

very thin electrode platings may be written9

4 ’ 4 ’
Kp‘ug)n P FB(O) e FB(O) o [KL:B]‘-‘h' ’ 3.30)
2
where
Oy e ) i
Kan "BVl - MVEl@s2), (3.11)

and since the platings are isotropic in the plane

’ - ¢ !
Yascp = Yo%ar®cp ** Caclap * Capac)

NN ’ * ? oy ? ¢ ’ Uit
Ao A/ +2), Vap (2°GA +207) /(A" +20 )] GAB’ (3.12)

which are for the upper plating and similar equations hold for the bottom
plating, but with double primes replacing the primes. In order to obtain
the static equations for the plated crystal plate we need the boundary

conditions at all interfaces. The traction conditions take the form
i ' n n
KZA(h )=0, KZA(-h )=0,
! 4 " "
Koa(-h )-KZA(h) y Kpp(h')=K,, (-h), (3.13)
and the conditions of continuity of mechanical displacement take the form

'
w(o) -w(o) +hw(1) +h2w(2’

A A A A ’
(037, J0) . ) .2 Q)
Va wA -th +h Va (3.14)
. ()’ 0"
since the thickness displacements of the thin platings v, and w, take

place freely.

In this section in order to keep the derivation of the extensional
and flexural equations for the plated crystal plate clear we simplify the
treatment somewhat and ignore the elastic and thermoelastic constants that

cause coupling between shear and extension in the constitutive equations.




This simplification and attendant restriction of the equations is removed

in the next section. When flexure and extension are uncoupled, from (3.1)

we may write the extensional plate equations in the form

(0) ) _ (1) (0) , (1)

Bea*® "% Baa-%e T =0,

(2) k1), (2)

Xap,A " 2K, =0 (3.15)
10 ; (0) (2)
In order to allow for the free ~ thickness strains E,," and E,,°, we take
(@ (2)
22 0 ’ Kzz = 0 ° (30 16) 3

In addition, in order to eliminate the first order extensional equation
in (3,15) completelyll, we take

Ké:) ‘0, (3.17)

From (3.16) and the reduced form of (3.3), with (3.4) and (3.5), we obtain

C (o] V.
B 2 ey,
22 22 22
c C
(2) A (2) (2)
Ej2 En "c E:33 ) 3.18)

22

the substitution of which in the reduced form of (3.3) yields

K{y = zmic) £ + 133::2)] +3nte 1131(2) +e} B3 -] -1,
"3“3” = Zh[c)4E {(1)) . 3333(2)] *':2?“3[ 1331(? i 333;3)] -V, (T-T ),
3D D + Dol s Do)
D3 e + DD s Ty,
K = e, 5D + B2
@ - e+ a2], -
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10,
where 2 2
NG |l SRR i P
2 b )
11 11 c22 13 13 c22 33 33 t':22
Vei = v, =V,.C../C Vaa ™ Vaq = V5uCan/C (3.20)
BT Yy T D B T s R ;

From (3.15),with (3.16) and (3.17), we obtain the resulting second order
extensional equations

SRR N SRR 5

0. (3.21
Xas,a * Fp » Bpat T )
In this approximation from (3.6) the pertinent plate strains EA(:) (n=0,2)
take the form
(n) _ (n) (n) _ _ (n) (n) _ 1 (n)_ (n)
B =M Mag "W a0 By S GG 3PN Gl sz}

When written out,the constitutive equations, (3.11),for the upper electrode

plating take the form

4 ’ '
x® .zh'[(xé»fzu')w{?; SO Rl B R

o 3,3
0)’/ ) ) ro 00y " .. (0)/ 1 ¥
Ky =2h [()\°+2u. )w3,3 +A°w1’1 ]1-2n'y ('1‘-'1‘0) y
0)’ PRV () LA () 1L
= 2h (w +w ) 3,23
K3 ot T S 2 RE (223

and similar equations exist for the lower electrode plating, but with
primes replaced by double primes. In the case of these extensional equa-
0’ (0"

tions the displacements w and w

A 5 » in the upper and lower electrode

platings, respectively, are given by

‘_ (0 .2 (2 (0 _(0) . 2 (2)
wA -wA +h wA ’ wA -wA +h wA % (3.24)
The equations for the plated crystal plate are obtained by employing (3,13)
in (3.10) for both the upper and lower platings and then inserting (3.10)

for both platings in (3.2)2, with the result

B A A s . F -
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m o w2 0 ;)
T =Xap,atXap,a’ Fp =P Kp a *Xap a) - 3,25}

The substitution of (3.25) into (3.21) yields

© . ' " (2) .2,.(0)" _(0)”

e *he *Hp 170 [Ny +hK, +K 0] gm0, 6.2

which are the second order extensional equations of equilibrium of the
plated crystal plate. Clearly, Egs, (3.26) are consistent with the inte-

gral forms
JNA’(;:) ds=0, fna?(g) ds=0, (3.27)
c ¢

where

©_ ) (@' ()" (2) _ @) .2 (0 _c0)°
Xap "%ap *Fap *Fap 0 Xap “Kap th Ky +Kp ), (3.28)

and “A denotes the outwardly directed unit normal to the undeformed
position of the closed curve c in the plane of the plate. Hence, on an
edge of the plated crystal plate, the traction boundary conditions that

accompany (3.26) are

(0) _ =(0)
g =%
NAXS) = —42) ’ (3.29)

where the fgn) represent applied traction resultants on the edge. The

(0) (2)

alternative displacement conditions are on w and wp . The specifica-

B
tion of appropriate combinations of these prescribed conditions may
readily be shown to be unique to within homogeneous rigid plate rotations
of zero and second order by means of the usual Neumann type procedurelz’13’4.
At an edge of discontinuity separating one region from another, we require

the continuity of

x2 L0 @)

(0)
NGop 0 ®p 0 Yp s ¥ Sy
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Since the upper and lower electrodes can have different thicknesses
2h’ and 2h“, flexure can occur even though the temperature change (T-T)
is homogeneous. In order to obtain the flexural equations we first write

the plate equations in the form

(0) (0) (1) (0) . (1) (2) (1) (2)
Ba,a*2 =% B a~%op P "0 Ky am2g, +F, =0, (.31)

In order to allow for the free thickness—strainslo, we take

(l)
22 =0, (3.32)

In order to eliminate the second order flexural egquation in (3.31) com-

plete1y14, we take

Ké:) . (3.33)

In addition, as usual in the elementary theory of flexure we take the

(0)

thickness-shear plate strains EZA to vanishls, which with (3.6) yields

N
(1) (0)
wA - w2,A % (3.34) |
|
From (3.32) and the reduced form of (3.3), with (3.4) and (3.5), we obtain |
c, c :
(1) ) _ (1)
)2 5 e e TR el
22
the substitution of which in the reduced form of (3.3) yields the flexural
constitutive equations in the form
(1) _ 2,3 » (1) (1) (1) 3 (1)
Ky =3Fhle)Fy) +€laByy ], Ky = g hcg Ry
(1) 2 3 (1) (1)
K33 = FH(C5E)) + a1, $3.35)
where c11’ ;3 and d;a are given in (3.20), From (3.6) and (3.33) we
4
find that the pertinent plate strains take the form |
e i o—— i
WSPIENy i it Al i i s il s i




(1)

(1)
B "7 st " 2. - 2.7}
From (3.31) - (3.33), we obtain the usual flexural equations
(0) 0) ) 0 . (1)
%e2,8*F ( =0 Pyni % T "% 3.28)

where we have taken proper account of the fact that the thickness-shear

stress resultants Ré:)

(0)
2A

exist even though the associated thickness-shear

plate strains E vanish. The substitution of (3.38)2 into (3.38)1 yields

(D p) )

e thheth =% 239

which is the equation of the flexure of thin plates. The equation of
flexure for the plated crystal plate is obtained by employing (3.13) in
(3.10) for both the upper and lower platings and then inserting (3,10)

for both platings in (3.2)2, with the result

(0) (0)

'h[K KﬁB A]' (3.40)

£ .o,

rl)
B

4 4
In this case of flexure the displacements w;O) and w;O) , in the upper

and lower electrode platings, respectively, are given by

' 4
B L SR S

B y "M% s Moy s e
The substitution of (3.40) into (3.39) yields
1 0’ (o
xS +n(S - ) M ap = 0, (3.42)

which is the equation of static flexure for the plated crystal plate,

The substitution of (3,40) into (3,38) yields

(0) ) 0)’ (o)' (0)

Kpa,p=0» [Kyg +hiKyy' =Ky’ )l 4 =Ky '=0, (3.43)
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14,
which are consistent with the integral forms
§ kY as =0, § N, s = I 0 o, (3.44)
where i
My = Ko +h(K(°) B ¥, (3.45)

and A is the area enclosed by C. On account of (3.34), the independent
edge conditions may not be obtained directly from (3,44). However, since
Eqgs. (3.34), (3.36), (3.37) and (3.42) - (3.44) are identical in form with
the equations of the elementary theory of the flexure of thin plates in
the absence of applied loading, the edge conditions for the plated plate
are the same as in the elementary theory of flexure of thin plates. The
Neumann type uniqueness theoremls for the elementary theory of the flexure

of thin plates shows that the traction boundary conditions take the form

Ny MagNs =T Ky 4 asmu as’ (et

(0) (0)

K2 *Np%op » My = Nplagp s \Svsul

and "B is a unit vector tangent to ¢ in the counterclockwise direction

where

and E, t and V are the prescribed bending moment, twisting moment and
vertical shearing force, respectively, applied on an edge. The alternate

(0) (0)

kinematic conditions are on w, * and aw /ON. At an edge of discontin-

uity separating one region from another, we require the continuity of

(0) (0) KR (0)
NTe s K2 5?7'%:’ s WY i i

ebaiinc i SR S NPTV AP PR




4. Static Plate Equations for General Anisotropy

In this section we extend both the extensional and flexural plate
equations obtained in Sec.3 under simplifying restrictive assumptions to
the general anisotropic case. However, we still assume that the basic
assumptions of extension and elementary flexure used in the last section
hold. Under these circumstances the extensional and flexural equations
uncouple and may be obtained separately. Hence, we again obtain the
extensional equations (3.15) and flexural equations (3,31), respectively,
from (3.1).

In order to eliminate flexure from the extensional equations, from
(3.31) it is clear that we must have

l((0) &

LY (1) Sy

% ~ % N Y% Ko =9, By %0, 1
along with
pi =0, (4.2)
since
0) _ (2) _
F, =0, F, =0. (4.3)

In addition, in order to allow for the free thickness strains E;g) and

2) e again have (3,16). Furthermore, since we have allowed for the

22’
free thickness strain E;g) = wzu), we must eliminate the first order

extensional equation in (3.15) completely again with the conditions in

(3.17). From (4.1), (3.16) and (3.17), we have

) _ (2) w _

N TV By MO, Ky

0. 4.4)

Since the temperature change ('r-'ro) is homogeneous, from (4.4),
and (3.3) - (3.5) all first order plate strains Eg) are implicitly taken

to vanish in the constitutive equations for the first order stress

-—e B - Vi ————_——— ko - a e e
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16.

(1)

on » ¥hich from (3.6)

resultants even though the first order plate strains E

are given by

(1) (2)
A "~ 2 ~

(w +

2,8 * P )5 (4.5)

actually exist in the case of extension by virtue of the fact that wél)

and H;Z) are nonzero for extension. If the first order plate strains E;:)
(1)

are to be included in the constitutive equations for the Ker, 2 the condi-

(1)

tions (3.16)1 and (3.17) must be eliminated and v, must be retained in

the description on the same footing as the ";P) and w{z).

apply even in the case of the isotropic plate and pertain to the descrip-

These comments

tion developed in Sec.3. In the resulting extensional description ob-

tained with the full inclusion of the variable wél)

, at the very least
flexural deformations will be induced in the general anisotropic case,
These flexural deformations will not occur in the isotropic case or in
the case of the restricted anisotropy considered in Sec.3. The inclusion

;i) in the constitutive equations for the Kéi) and the attendant

of the E
relaxation of conditions imposed and extension of the description is
quite cumbersome and known to have a negligible influence on the results
in the isotropic case and deemed to have a sufficiently small influence
on the results in the general anisotropic case that it may be omitted
without appreciable error.

Employing (3.16)1 and (3.17), which still have been assumed to hold
in this general anisotropic case, in (3,15) we again obtain (3,21) as
the second order extensional plate equations. From (4.4)1_2 and (3,3),

we obtain

) B2 @) _ -1 (Bw)

2
h h (2) =1
By * T B " %nCus\Bs *t T Eg )+°w“v(T'To) ’
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where we have introduced the usual compressed matrix notationm for tensor
indices according to the scheme
R, = 1,3,5; W,Vv=2,4,6. (4.7)

Substituting from (4.6) into the constitutive equations for the nonzero

extensional stress resultants in (3.3), we obtain

i K; = 2hy rz“” » B (2’] 2nB(T-T ),
@ 2.3 [0 .3 .2.(2)7] 2,3
Kp ’ihYns[Es 5 Ay ]'Eh B(T=T,), sk
where

=C -1

-1
o™ T~ Sl e B = C i (4.9)

R 'R~ RW Wvv°

The Yrg 2F€ Voigts' anisotropic plate elastic constants and the BR are
the associated anisotropic plate thermoelastic constants. At this point
we note that the Eég) , which exist in the general anisotropic case,

correspond to flexural type plate deformations, i.e., vertical plate

shearing strains, which, however, vanish identically in ordinary flexure.

(2)
2a °

of anisotropic extension considered here the three-dimensional strains

The same sort of statement holds, of course, for the E For the case

n‘, which we need, are related to the plate strains by

(0) , x%: (4.10)

1
s Sl s T W i e

! KL 2

(1)
2A

in the constitutive equations for the first order stress resultants.

in which we have taken the first order plate strains E to vanish as

The associated three-dimensional displacement fields are still given by

(3.7). The plate strains B::) (n=0,2) are given by

il Bt AL,



) _ 1 (n) W)
o 'y

(w

s i n . rul, (4.11)

b

and the remaining plate strains may be obtained by solving (4.6) with

the result

(0) -1 (0) (2) _ (2)
By =~ Swv°vsts +“wv"vﬂ' To)» By vsBs ’ e

and we note that the relaxation of plate stress resultants results in

plate strains and zero plate rotations. The nth order plate rotations

take the form17
() _1 @) _ ) (m+1) _, . (n+1)
U =7 M gV, ¥ 0+ (B S s 1%
where 2
=1 f ! (n)
Qr, = 2 ™ x "x,r.) Eo x; . f.
n=

As a consequence, we note for later use that

(1) (0)

w o=, (4.15)

since

g 1 0 Q)

(0) 1 0 (1)
s M R > % e

At 1, By =3 et a0, (4.16)

The extensional equations for the plated crystal plate are obtained
by employing (3.13) in (3.10) for both the upper and lower platings and
then inserting (3.10) for both platings in (3.2)2 as in Sec,3, which
results in (3,25), the substitution of which into (3.21) again yields
(3.26) as the second order extensional equations of equilibrium of the,
in this instance, general anisotropic plate. However, in this general
anisotropic case KO and X\2) are given by (4.8), rather than (3.19).
From (3.28) it is clear that (3,26) can be written in the form

’((O) =0, 7((2) =0, (4.17)
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where, from (3.28), (4.8), (3,14), (4.15) and (3.11) for the upper
plating and the equivalent of (3.11), but with primes replaced by double

primes, for the lower plating, for the general anisotropic case we have

) _ h' i (0) (
¥as 2"(Ynaco 5 Vaai * Ynncn) +2h \3 Yapep *
n . n’ (2) Bt %, . B
T Yascp * YABCD cD 2h(B +3 m Vas t W AB) R= )~

”

(0) +k E(0)

2m’ ., )
. (1;: Yanco = H Yasco) ®2ceaea,p * ¥20eafaa,c ~ G2cT,0 ™ CaoT ¢

”

X(z) 2 3n’ 3h ) 2

= B i B
2 " 3P \Yapco * T Yamco Vasits 5P \Yapep *
N

5h' ? Sh )!‘2) 3 3( 3hl - ¥ 3h’ *l)
% Yascs * 5 Yanco 3P P * T Vas * R Vae/ T T -

”

O .o l0)

4 ) %
(I;: Yasco ™ Yasco *cea®ra,b * *2pmafEa,c ~ C2cT,p ~ C20T, ¢’ (4.18)

where
"ws"cwvcvs’ Cw = wvv’ et

in the compressed notation and we note that T,D vanishes for the homo-
geneous temperature states considered here. The edge (or boundary) con-
ditions at a junction are still given by (3.29), (3.30) and the discussion
in between.

In order to eliminate extension, which has already been considered,

from the flexural equations, it is clear from (3.15) that we must have

(0) ) _ (0) (2)

e =% K e . i
along with
p{? a0, £ -0, (4.21)
since
p1) =0, (4.22)
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(1)
22 ?

have (3,32), Furthermore, since we have allowed for the free thickness

(1)
22 °

completely again with the condition (3.33) since

In addition, in order to allow for the free thickness strain E we again

strain E we must eliminate the second order flexural equation in (3.31)

()

2 0. (4.23)

Moreover, as usual in the elementary theory of flexure, the constitutive

equations for the zero order shear stress resultants Kz(g) are ignored and

(0)

the zero order thickness-shear plate strains E2A

are taken to vanish and
we again have (3.34). From (3.32) and (4.20)2 with (3.3) - (3.5) for m=1,
we obtain

Q) __ . g

Eq wvsts

(4.24)
where we have introduced the conventions shown in (4.7). Substituting
from (4.24) into the nonzero equations for the first order stress result-
ants in (3.3), we obtain

a1y _ 2.3 (1)
Ko =Fhy ", (4.25)

where the Yns are defined in (4.9)1. The remainder of the equations and
discussion for the elementary theory of flexure presented in Sec.3 hold
without change with the exception of Egs. (3.36) which are replaced by (4.25)

for the general anisotropic case considered in this section,

5. Large Electrodes on Quartz Plates

A plan view of the electroded plate is shown in Fig,2, The xz-
coordinate axis, which is normal to the major surfaces of the plate at
'r-'ro, is arbitrarily oriented with respect to the crystal axes. Since
the outside edges of the plate are traction free, from (3,29) and (4.17)

we have
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9 0, k@ 2o

2 2 (5.1)

for all the unelectroded portions of the plate. Consequently, frem (3.30)

the plate edge conditions that determine the biasing displacement field

in the electroded region take the form

(0) (2) (0) (2) if

2 0 2
0) _ ’(() (0) (2)

X3 =0, =Q

=0

13 2 X'

» X33 =0 at x,=%4,, |x1|<zl. (5.2)

The solution satisfying (5.2) and (4.17) takes the form

(0)

2
x'o (2)

=0, XAB = 0 everywhere . (5.3)

This solution is unique to within static homogeneous plate rotations of
zero and second order, Substituting from (4.18) into (5.3) for identical

electrodes on both surfaces, we obtain

(Yns 2h' YRS)E(O) ol (Ya o Yns) Y ( 2_:""’;')“"'1'0)’

(Yns 6: Yns) s(O) ( Yrs * + 0 YRS)E(z) (BR+6_:: ";')‘T'To)‘

(5.4)
Equations (5.4) constitute six homogeneous linear equations which may
readily be solved for the six plate strains Eéo) and E(z). Clearly, if
we define the six dimensional vectors and matrices A B, and as by

(0) (2)
S

[Ab} = [Eg

og) = [(B+ 2 2), (B +S25 )], B=1,2...06,

1, a=1,2 ... 6,

O S e i i
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2% ) z(Yns 2n’ ) i
(les+ n Yrs) PS5t Vas
o' 6h’ 2(3 6h’
' 4
L(YRS i h YRS) B (_5' Yrs % b YRS) . (5.5)
then the solution to (5.4) can be written
A =a B (T-T) (5.6)
o aB B o ? e

which yields Eéo) and Eéz) as known expressions linear in (T-Tb). Note

that the solution is independent of zl and L3 and further, that since Xig)

and Xﬁ;) constitute two planar tensors that vanish everywhere, the plate

edge conditions

(0) o (2)
NGe =0, MY =0, (5.7)

at the edge of an electrode are satisfied for the edge having a variable NA
and, hence, being a curve., Consequently, the solution is valid for elec-
trodes of arbitrary shape provided the electrodes are large compared to

(0) (2)
S

the thickness of the quartz platels. When E and Es have been de-

termined from (5.6), Eéo) and E£2) are readily determined from (4.12).
Then the three-dimensional strain can be evaluated from (4,10}, which
holds for this purely extensional case. There is no flexure because the
temperature change (T-To) is homogeneous and the electrodes are identical.
It is well known that in static linear elasticity the solution to a
boundary value problem is unique only to within a static homogeneous
(global) infinitesimal rigid rotationlg. In addition, the change in fre-

quency due to a homogeneous infinitesimal rigid rotation is shown to

vanish in the Appendix. Consequently, without any loss in generality,

we may select the homogeneous rigid rotation to take any value that is

convenient and in particular to vanish., Accordingly, we take




1
qla. "2 Mm% 581

w =E__ = E(o) + sz(Z)

L,K KL KL 2K 6:9)

which with (5.6) provides the biasing displacement gradients w as a

K,N

known linear function of (-1"-'1'0). Thus, we may now substitute from (5.6)
into (4.12) and then from (5.6) and (4.12) into (5,9), which may then be
substituted into (2.11) with (2.12) to obtain GLYMa as a known linear
function of (T~ 'I‘o).

6. Thickness Modes in Piezoelectric Plates

Thickness modes in piezoelectric plates are solutions depending on
the thickness coordinate only, which satisfy the linear piezoelectric
equations and the boundary conditions on the major surfaces of the plate,
but do not satisfy any conditions on the minor surfaces. The thickness
solutions are of practical importance because plates with lateral dimen-
sions very large compared to the thickness are employed in resonators and
filters, and, consequently, the actual mode in the bounded plate is not
that different from the thickness mode. In any event in this first treat-
ment of temperature induced frequency changes in electroded quartz plates
only the thickness modes will be considered.

Since X, is the thickness coordinate, we substitute from (2.,3) into

2
(2.4) and retain xz-dopendence only to obtain

S2vaeUa, 22 * S22y® 22 T PYy»

22y%, 22 ~ €22%,22 =0 )




24,

which are the differential equations that must be satisfied by the thick-
ness solution, For the thickness eigensolutions of interest here, from
(2.14) for the linear case only, with (2.3)1 and retaining xz-dependence
only, we obtain the boundary conditions

P ‘o'8,, @ =%
sz“a,z*ezzﬂ,z'* 2h'p 4, ¢=0, at x,=%h, 6.2)

since the electrodes are shorted. The solution for thickness-modes in

arbitrarily anisotropic piezoelectric plates with shorted electrodes on

the major surfaces may be written in the form20
: ) )
}: n)g(n iwt
= B B sin T X.e
2 )
Y L Y T
e
~ 22y (n)g(n) . iwt
522 ) 5™8™ sin x, +1x, ] 1", (6.3)
22 n=1l
which satisfies (6.1) provided
=(n) (n) = (n) 2.2
(Ei-’Yaﬂ-"’(n Selbe 0 8 =00, 6.4

and the B;n) are the normalized eigenvectors of the linear homogeneous
= (n)

algebraic system in (6.4) for the eigenvalues T of the piezoelectrically

stiffened elastic constants, which are given by

<:2Y°'2 = ngOQ + e22Ye220/622 5 (6.5)
In order that (6.2)2 be satisfied we must have

3 e
L__% T g 220 g gioq g, 6.6)
n=1

(n)

and (6.2)1 are satisfied if the B are given by

g™ .. pé")ezzal/a(n)‘nn[cos Th-Rh sin T hl, 6.7)

where we have employed (6.4) and

B T L p——————— v i S S i




B(n)s(m) = 6

Y wn® R=20'h'/on, (6.8)

in obtaining (6.7) from (6.2)y. Substituting from (6.7) into (6.6), we

obtain 3
L[l - X x @ 2/Tlnh(cot Th- R‘l‘[nh)] =0, (6.9)
n=1
where B(n) B(n)
™). X 2(;‘3’ o %220 (6.10)
¢ €2

The condition for a nontrivial solution of the scalar equation (6.9) is
3
E &™) 2/ n(cot N n- &1 n) = (6.11)

n=1

the roots of which determine the resonant frequencies of thickness vibra-
tion of piezoelectric plates driven by the application of a voltage across
the surface electrodes. From this unperturbed thickness eigensolution
we can determine the normalized eigensolution we need for the perturba-

tion formulation in Sec.2 simply by writing

9, = /N, E=g/N, (6.12)

vhere, from (2,8), including the electrode platings, (6.3)1 and (6.8)2

we find
3 3 sin(M -7 )h  sin( +7 )h
wap T Y ampmympr = 3 "u; M
m=]1 n=]1 n ; in

+ 2Fh sin Tln'h sin %h] . 6.13)
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7. Temperature Dependence of Resonant Frequency

The change in the frequency of thickness vibrations with temperature
of any electroded quartz plate may now be determined from (2.1), which we

rewrite here for any one mode in the form

AM = Hn/zwu, w-wu- a, (7.1)
where for the case of thickness vibrationsn we have

h

~n M :
HM-- i{xz.Yg ’2 dx2. (7.2)

From (2.5) and (2.10) for the thickness-mode being perturbed here, we have

X o= (@ +

M
2 2v2a ¥ %2v20'%, 2 (7.3)
where azyza defined in (2,11),with (2.12),is known as a linear expression

in (T-To) from (5.9),with (5.5), (5.6) and (4.12) and

The dgzszdT are obtained from the first temperature derivatives of the
fundamental elastic constants of quartz6 dgomg/d'r referred to the principal

axes by the tensor transformation relation

d d ~

ar S2y2a ~ 220%yE®2F%ac 3T SDEFG’ TS
where the ‘yn are the matrix of direction cosines for the transformation
from the principal axes to the coordinate system containing the axis normal
to the plane of the plate. When the conventional IEEE notation?? for
doubly-rotated plates is written in the form (Y,X,w, £)9, 0 ,where ¥ =0, the

rotation angles ¢ and © are the first two Euler angles, and the ‘ﬁG are

given by
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cos @ sin @ 0
agg = | -cos @ sin ¢ cos 6 cos ¢ sin @
sin © sin ¢ -sin 6 cos ¢ cos 6 (7.6)

’

since § = 0, Clearly, the transformation relations for the second and
third order elastic, piezoelectric and dielectric constants, and coeffi-

cients of linear expansion may be written in the respective forms

Sxaan = ®xp®LE® M NGSDEFG #

SxLMNAB -~ 2KD LE MF NG AH BISDEFGHI ’

xam” 2k LE MFDEF

o™ Sl Ok Aol Kty
where the tensor quantities with the upper cycle are referred to the
principal axes of the crystal.

Calculations of the resonant frequency, called WOy here, for the
particular unperturbed thickness-mode of interest proceed by numerically
finding the value of Wy satisfying (6.4) and (6.11). After the Oy cf
interest has been determined, the full Mth eigensolution is obtained by
substituting the Bés) and ﬂn from (6.4) and the B(n) from (6.7) into (6.3).
The normalization integral in (6.13) is then evaluated and the normalized
eigensolution obtained from (6.12). Then the perturbation integral HM is
evaluated by employing (7.3) and (6.12)1 in (7.2) and performing the
integrations, On account of (5.,9), with (5.5), (5.6), (4.12) and (6.3)1 two

distinct types of integrals arise in (7.2), the evaluation of which yields
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5 ®)p ()@ (q)TI B q[‘i" ‘!k*"g"‘
sin ( -TI )'h
+
M, - q) ’
S 5(P)g (@)
x°g , a%, = Plg p 3 @p @y q
Datdmed 7 sonaonmn (-
2
2 2h h
sin(l_+7 )h + cos(T_+T_ )h + -
(15+nq)3) B e b (“p'"q
2 2 2h
— sin(l_-TM)h + ——m— cos( 'I] )h (7.8)
M, =1 ) "o M, = Mg 2 T ]

Calculations have been performed using the known values of the second
order elastic, piezoelectric and dielectric constants of quartzza, the
third order elz:s1:1c24 and themoelastic25 constants of quartz and the
recently obtained6’ 4 temperature derivatives of the fundamental elastic
constants of quartz, Specific calculations have been made for doubly-
rotated quartz plates 1.7 thick, with 4000 A thick gold electrodes on
the major surfaces, vibrating in the fundamental thickness-mode. Typical
results of the calculations are shown in Fig§.3 -8, Figure 3 shows the
actual change in frequency for an electroded quartz plate for a fixed
value of 6 =- 49,2167°, which corresponds to the BI-cut for =0, as a
function of ¢. The lower and upper curves are for the B- and C-modes,
respectively, which are defi.ne¢126 so that for each cut and mode number n
the sequence fA > fB > fc is followed., The curves in the figures repeat
because of the symmetry of quartz. Figure 4 shows the change in frequency
due to the presence of the electrodes for the same orientations and modes
of the electroded plate shown in Fig.3. Note that the change in frequency

due to the electrodes is about two orders of magnitude smaller than the
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actual change shown in Fig.3. Since a portion of the aging rate is a
result of the relaxation of residual stress in the electrodes”, the
change in frequency shown in Fig.4 is the portion of the actual change

in frequency that contributes to the aging rate. Figure 5 shows the actual
change in frequency for an electroded quartz plate for a fixed value of

8 = 35,25°, which corresponds to the AT-cut for ¢= 0°, as a function of ¢.

Note that the C-mode, which is the piezoelectrically active mode for the

AT-cut, i.e,, for (p-0° , is relatively flat and has no zero crossings,
while the B-mode has wide excursions and zero crossings. The zero cross-
ings for the B-mode correspond closely to points on the locus of zero
temperature coefficients shown in Fig.2 of Ref.26. Figure 6 shows the
change in frequency due to the presence of the electrodes for the cases
for which the actual changes in frequency are shown in Fig.5. The dotted
line in Fig.7 represents the actual change in frequency near a zero
crossing to an enlarged scale for a fixed value of ¢= 5° for the B-mode,
and the solid line represents the change in frequency due to the presence
of the electrodes, Note that the two lines have different scales, one
being two orders of magnitude smaller than the other., The difference in®

for the zero crossings is related to what is called the apparent shift in

angle of the zero temperature cut with electrode thickness, The vertical

distance from the intersection of the dotted line with the horizontal axis,

P ——

which is the actual zero temperature cut of the 1.7 mm thick quartz plate

with 4000 A thick electrodes, to the solid line measured on the inner scale

represents the change in frequency that can contribute to aging. Thus,it
% ' is desirable to find actual zero temperature cuts which have that ordi-

nate as small as possible for a given electrode thickness. The dotted
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line in Fig.8 represents the actual change in frequency near a zero cross-
ing to an enlarged scale for a fixed value of ¢=30° for the C-mode, and
the solid line represents the change in frequency due to the presence of
the electrodes. The zero crossings in both Figs.7 and 8 correspond closely
to points on the locus of zero temperature coefficients shown in Fig.2 of

Ref.26, as they should.
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FIGURE CAPTIONS

Schematic diagram of the plated crystal plate
Plan view of rectangular electrode on gquartz plate

Actual relative change in the fundamental resonant
frequency per °K for 1.7 mm thick doubly-rotated quartz
plate with 4000 A thick gold electrodes as a function
of @ with 6=~ 49°13',

Relative change in the fundamental resonant frequency
per °K due to the electrodes for the cases treated in
Fig.3.

Actual relative change in the fundamental resonant
frequency per °K_for a 1.7 mm thick doubly-rotated quartz
plate with 4000 A thick gold electrodes as a function

of ¢ with 9=35"15',

Relative change in the fundamental resonant frequency
per °K due to the electrodes for the cases treated in
Fig.5

Relative change in the fundamental resonant frequency
per °K for a 1.7 mm thick doubly-rotated quartz plate
with 4000 & thick gold electrodes near a zero crossing as
a function of O with ¢ =5°, The dotted and solid lines
indicate the actual and electrode induced changes in
frequency, respectively.

Relative change in the fundamental resonant frequency
per °K for a 1.7 mm thick doubly-rotated quartz plate
with 4000 Athick gold electrodes near a zero crossing
as a function of 6 with ¢=30°., The dotted and solid
lines indicate the actual and electrode induced changes
in frequency, respectively.
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APPENDIX

We now show from the perturbation integral for Au in (2.1) and (2.2)
that Au vanishes for an arbitrary pure homogeneous infinitesimal rigid

rotation Qllt.L’ which is given by

1
QL =3 ™k~ k1) - (A1)
Since under these circumstances the strain El]éL vanishes as does the

stress T!];L’

from (2.12)2 and (Al) we have
1 1 1
Yrx ™ ke %™ ko il

and from (2.11) we obtain

1
L'YM\) 2LYK.M0K\) 2Ll(MVQK'Y i (23)

Since the biasing displacement field resulting from the nonlinear
behavior of the electrode plating has not been included in the description,
i.e., in Eq. (2.14)1, the form of the perturbation integral in (2.2) does
not actually result in a zero AH for nonzero Ol];L' However, if the bias
due to the nonlinear behavior of the electrode plating is properly in-
cluded in the description, the amended form of the perturbation integral
does result in a zero Ah for nonzero Qllix.‘ The unbiased plating equations,
which enable the entire effect of the plating to be treated as a homogene-
ous boundary conditior at the surface of the piezoelectric plate and
thereby result in a major simplification in the analysis, are based on a
number of simplifying thin plate ass\mptions7 which result in the occur-
rence of Voigts' anisotropic linear plate constants, Since the use of
the approximate thin plate assumptions in the case of the biased plating

will result in the occurrence of effective anisotropic plate constants

other than the Voigt constants, it does not appear to be particularly




purposeful to obtain the biased approximat. thin plating equations, Con-
sequently, in this appendix we take the alternative course of extending
the perturbation integral for Ah to thc case vhere the electrode platings
are included as additional three-dimensional regions attached to the
piezoelectric plate., We then show that the extended perturbation integral
results in a zero Ah for nonzero q]&'. However, in order to keep the demon-
stration simple and clear and not introduce additional complications we
first show that, for no electrode plating on a purely elastic plate, the
perturbation integral presently in (2.18) vanishes for an arbitrary Ol]&‘,
and we further note that since the actual electrode plating is very thin,
the perturbation integral in (2,18) very nearly vahis'hes for thin electrode
platings on the piezoelectric plate.

Substituting from (A3) into (2.19) for zero temperature change, we
obtain

1
g y tgx.yxnﬂxa LRManQY]g:', Oy (as)

which by virtue of the symmetry of the SI-JKH and the fact that ﬂ]]éa is

homogeneous, may be written

n“-- 2011(0 lgmvgz’l‘g};,udv. (AS)

Substituting from (2.9) 1 for the purely elastic case (e = 0), we obtain

MLy

;e 2011“.[1(““&;’"@, o
v

which with the aid of the divergence theorem and the normalized eigen-

solution form of (2.4) 1 yields

£ AT e B A




== ]| e as e [ odel ). )

Since for traction-free boundary conditions in the linear eigenvibration
problem we have
NX =0 ons, (a8)

Bgs. (2.1), (A2), and (A7) yield
A =0, (A9)

In order to obtain the appropriate form of the perturbation integral
for the electroded piezoelectric plate, we return to Egs. (3.17) and (3.18)

of Ref.l, which have the form

~M o2 28 _

KUY’L +p uhuY-o, .DL,L o, (A10)
¥t +"1¢ ot g, B+ B wo (a11)
Ly,L Ly,L Y FEERE TRl 7

where (Al0) are the equations satisfied by the .th eigensolution and
(All) are the equations satisfied by the nearby perturbed solution at
frequency w. To (Al10) and (All) we must adjoin the equations for the

nonpiezoelectric electrodes, which may be written in the form

28, o, P, -
’
Bl 8 A0, o,

vwhere m represents the mth electrode, say m=1 for the top electrode and
m=2 for the bottom electrode, and since we are concerned with perturba-
tions in which the electrodes remain shorted, we have (A12), and (A13),.

From the first of the conditions in (Al10) - (A13), we form

L1y oy - gy g oy %o av o

i A o s it e e 0 0




- -ea-wmwmm
.

Y]‘ g y,x.*"-o‘”: w’“:'ﬁ{:, ﬁ“ +p‘°w’u;)u""’1¢v- (A14)
@

and at this point for our purposes, from (2.3)1and (2.5)1, we note that

m m ~m m
g: = Syma’a, M’ m = LyMa’a, M’ a2

where from (2.11) for zero biasing stress '1"1 we have

| M m
1- “Lyma " 3Lymnm * Sy, x * Suioly, k- 159

Performing the usual Operationsza, employing (2.3), (A10)2, (A11)2 and

i the divergence theorem in the usual manner, we obtain

(m - )[J' Ou"'u av + 2 J. Ty dv] Iu [KI-YV
Kf‘ 3!. - .D""cp]ds + Jli [‘KL“Y, Lu$ +3’I"’ L@'“] av ‘ e
E I @”\\()ds + I ﬂn % dV] (A17) § !

Since the perturbed solution is nearby the unperturbed solution, we have

- e o o
b=w -w, | a] <a u“ W=, Iml <<|uY|. (a18)

S——

Substituting from (A18) into (Al7), neglecting products of small quantities,

introducing the normalization integral and employing (2,3) for the pth mode,

(2.7) and (2.9), we obtain {
A= Bp./z"h ’ (A19)

where




PR SR

IR

As,
z 2 n n A
H, liutlkw )é;'ygy+d - du'f]ds + J'i gy, Lq$ +ap Lf“]dv
mn  my
2” "L‘ LY Y gJdas + ‘J;mkI‘Y’ i dv] i (A20)
and ~ ~,
L ~‘&.z u ) : e K
< TR T e e L
L e L T ®) g:) ¥ B
L L mh m
JP u u
dn-—L—, md _!‘1., m--J—-’kw=$,g -—J—,
Koy W gy TE e HE. Wen M My
(A21)
with
N -I Pt dv+y I P ™ aqv (a22)
) g - Y

In (A20) the integrals over sm are of two types, one in which the
surface abuts free-space and the other in which the surface abuts the
piezoelectric body. Similarly, since the piezoelectric body is only
partially electroded, the integral over Si is of two types also, one in
which the surface abuts free-space and the other in which the surface
abuts an electrode. At the interfaces between the electrodes and the
insulator, the surface element in (A20) occurs twice, once from each side
with outwardly directed unit normals NL, which then are oppositely di-
rected. If we agree to count each such surface only once and adopt the
convention that the normal NL is positive when directed out of the insula-

tor into the electrode at a contiguous surface, (A20) can be written




e e

TR S B /3120

URMrel SRR 5 B

6.
i £ " Z él- L _ mb
H, :[;fnLtqu“ - K59y = 9y a“flas +Z_ :[ie N0 kw)q:
v mt my_mpm
(k’t"Y )g +d"%" &I“tlds +2I N, O g - Ko lhas
+ f W,Lg +a" E"Jdv +z;[m k':‘:, g‘l:'" av , (A23)
V m

in which -’1‘ £ denotes the portion of the surface of the insulator abutting
free space, J" " denotes the portion of the surface of the insulator abutting
an electrode and -Pf denotes the portion of the surface of the electrodes

abutting free-space, and where we have employed the conditions

o =d, o' =g

along the surfaces on which the electrodes are attached to the insulator,

Since the uth piezoelectric eigensolution satisfies the boundary conditions

Nk =0 na =0, on ST,

L Ly ¥
mh 2 ie
NL(kLY ) = 05 # =0on/°,
m £
N Ky = 0, on " s (A25)

from (A23) Hu can be written in the form

j' nL(kLYg“m““f“)as +Z]' N [(k -k"’")g:‘{ - &'tas
m jie

+YI '“as-r{i(k;v’ny I.I‘!")av E‘L:Y"Lq?’dv.

(A26)

-




A7,

In the perturbation integral in (A26) the quantities without the W
are perturbation terms which are to be determined from the puth eigensolu-
tion due to the presence of the bias. The boundary conditions that exist
in the presence of the bias are

2 n n £
NL(klw+kLy)-0, NL(d +d,)=0, on s i

n m{ .mn

2 -~ ie
Ny O +kp - KD -k =0, E=o, on /€,

mf{ .mn,
Ny (kP +Kp) =0 an . (A27)

Substituting from (A27) into (A26), rewriting the surface integrals so
that normals to all surfaces are positive as in Eq. (A20) and employing the

divergence theorem, we obtain

B, =- " yav - E K™ gy A28
I(kny %, L . ,L’d J. LYg‘Y, SR

which is the form of the perturbation integral of particular interest to
us, In (A28) the variables with the superscript n take the values given
by the pth orthonormal eigensolution J; y ?:”, g:/u in the presence of the
bias, and consequently, from (2.5) for zero temperature change, (AlS5) 2

and (A21) we have

k® =& g  +8 P

Ly LyMaea,M = MLy ,M

n ~ a
Q=e_ d -emi‘:u,

L~ ‘o,
~m b
*ty = CLymao, M (i

where from (2.12) of Ref.l, including the terms depending on the biasing

deformation only, which are tiie only ones needed for our purposes here,

we hmre“"9

1 € - 28 .111:1

o™~ Fraoec®se e, x’ in” ML’ o




where fm, €, and o denote the first order electroelastic constants,
the electric permittivity of free-space and the Jacobian of the biasing
deformation, which is approximately unity. The substitution of (A29)
into (A28) yields

n h
g J LYMaga, My, L +2emygl:n‘#,1.

- ¢ f"%"‘)dv VJ‘

oFu g av. (A31)
3

L‘YMaga, My, L
Equation (A31) is the form of the perturbation integral we need to show
that Awu vanishes for a nonzero pure homogeneous infinitesimal rigid
rotation Q;'L of the electroded piezoelectric body.

For a homogeneous infinitesimal rigid rotation of the electroded

piezoelectric body, from (A2), (Al6) and (A30), we have

am
CLyma ~ 2Ly1m0ka ZLKMGQK'Y

Cruy = enm%’ LY e

along with (A3), since Ellcr. vanishes and the electrodes are attached to

the piezoelectric body. Substituting from (A3) and (A32) into (A31), we

obtain

1
i .r ( (CLYKqu +°Lmr§<y)9a, y, 2em%?:u91;, L
“ m w-
Z. J. Lymﬂxa i 21.10«:%] il (a33)

which by virtue of the symmetry of the ¢ e and ¢ and the fact that

2LJKM’ MK 2LJKM
011@ is homogeneous, may be written
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R9,
£
¢ R g g
: i mxa[.[ -l 2 m ] "
H 1(21041.\: v,1 et 1) % w8V * L lmzmm y, L%, 8 (234

Substituting from (2.9) 1 and (Al5), with (A21) and omitting the super-

script £, we obtain

B, =- 2QKD[_[ a’ dv+y_[ k""' %o, dV] 5 (a35)

which with the aid of the divergence theorem, the normalized forms of (AIO)1

and (Al12) 1 and the conventions introduced in (A23) yields
2 b, }“J‘ my
B, = 2(%[ f NM)é:m ads+?f NM(kMK km()g as+) | wNEMas
SiE m A m Af
+ W (_r p g g dav +X I pmgl:‘g:‘ dvﬂ 5 (A36)
v

where we have employed (A24) in obtaining (A36). Now, from (Al9) and (A36),

with the conditions in (A2), and (A25), we have

Au =0, (A37)




